The complex of maximal lattice free simplices

نویسندگان

  • Imre Bárány
  • Roger Howe
  • Herbert E. Scarf
چکیده

The simplicial complex K(A) is defined to be the collection of simplices, and their proper subsimplices, representing maximal lattice free bodies of the form (x: Ax<~ b), with A a fixed generic (n + 1 ) × n matrix. The topological space associated with K(A) is shown to be homeomorphic to R n, and the space obtained by identifying lattice translates of these simplices is homeorphic to the n-toms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal integral simplices with no interior integer points

In this paper, we consider integral maximal lattice-free simplices. Such simplices have integer vertices and contain integer points in the relative interior of each of their facets, but no integer point is allowed in the full interior. In dimension three, we show that any integral maximal latticefree simplex is equivalent to one of seven simplices up to unimodular transformation. For higher dim...

متن کامل

The Topological Structure of Maximal Lattice Free Convex Bodies: The General Case

Given a generic m x n matrix A, the simplicial complex/C(A) is defined to be the collection of simplices representing maximal lattice point free convex bodies of the form {x : A x <~ b}. The main result of this paper is that the topological space associated with/C (A) is homeomorphic with R m-1 . ( ~ 1998 The Mathematical Programming Society, Inc. Published by Elsevier Science B.V.

متن کامل

On the Unique-Lifting Property

We study the uniqueness of minimal liftings of cut generating functions obtained from maximal lattice-free polytopes. We prove a basic invariance property of unique minimal liftings for general maximal lattice-free polytopes. This generalizes a previous result by Basu, Cornuéjols and Köppe [3] for simplicial maximal lattice-free polytopes, thus completely settling this fundamental question abou...

متن کامل

Lifting properties of maximal lattice-free polyhedra

We study the uniqueness of minimal liftings of cut-generating functions obtained from maximal lattice-free polyhedra. We prove a basic invariance property of unique minimal liftings for general maximal lattice-free polyhedra. This generalizes a previous result by Basu, Cornuéjols and Köppe [BCK12] for simplicial maximal lattice-free polytopes, thus completely settling this fundamental question ...

متن کامل

The Shard Intersection Order

We define a new lattice structure (W,) on the elements of a finite Coxeter group W. This lattice, called the shard intersection order, is weaker than the weak order and has the noncrossing partition lattice NC(W) as a sublattice. The new construction of NC(W) yields a new proof that NC(W) is a lattice. The shard intersection order is graded and its rank generating function is the W-Eulerian pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 66  شماره 

صفحات  -

تاریخ انتشار 1993